If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+20y+1=0
a = 5; b = 20; c = +1;
Δ = b2-4ac
Δ = 202-4·5·1
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{95}}{2*5}=\frac{-20-2\sqrt{95}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{95}}{2*5}=\frac{-20+2\sqrt{95}}{10} $
| (5x+2)/7=(1+2x)/2 | | 4x/3=512 | | 7/15(x+4)+2/15(x+4)=36/5 | | 10^x=34198 | | 2+5z=4z+1 | | 4x-8+84=180 | | 10y/9+1/3=(2y-1)/9 | | 3a+60+2a=180 | | 2=-(-2-2x)/5 | | 7y-16=15 | | 1/4k-2=3/4k+8 | | x+5/3=x-8/2 | | 23+8d=63 | | (x/6)-8=16 | | 4x+(2x+6=90 | | 6x+10x=-2 | | 3z+3 +2z=5 | | 1/2(x-6)=3/2x+4 | | 124+19+x=1435/6 | | 5(x+1)^2=(x+1)^2+32 | | 12-11-x=2/5 | | 5(x+1)²=(x+1)²+32 | | 3x-8+4x=15x+16-2x | | 36/d=60 | | (3x+20)°35°=90 | | 2a+a=48 | | 3x+6+8x+7=180 | | -3x/4=4/5=4/5-x+5/4 | | 7x-5+4x+40=180 | | 0.6(x+5)=0.5(x-20) | | 2(x+4)-3=9-3(x-2) | | 3x−2416−3x−1212=4 |